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The rapid increase in computer power observed over the last few decades has
allowed the development of computer simulation models for C and N cycling
in agricultural and natural ecosystems. Models of the N cycle may be useful
to understand and manage ecosystems so as to protect environmental quality
and ensure long-term sustainability. In this chapter, we first present general
concepts on systems, models, and model development, followed by a review of
current approaches used to model different transformations in the N cycle. We
conclude with a general discussion of the current status and future research
needs in the area of N models. We want to emphasize that it is not our intention
to provide an exhaustive review of the different N models available, but instead
to describe representative approaches used by the different models in existence.
Detailed reviews of several C and N models can be found in publications by
McGill (1996), Molina and Smith (1998), Ma and Shaffer (2001), and McGechan

and Wu (2001).

Systems, Models, and Software Tools

Systems and Models

A system is a set of components that act and interact together to achieve a
certain goal (Jones and Luyten, 1998). Systems are composed of subsystems, sub-
systems are composed of sub-subsystems, and so on until the maximum level of
resolution allowed by current scientific knowledge is reached. An example of a
system is the set of components of the N cycle in soil. A model is a simplified rep-
resentation of a system (Ford, 1999), and as such it attempts to capture the main
components and behavior of that system.
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Classification of Models

Models can be classified according to different criteria (Ford, 1999). Based on
their nature, they can be divided into mental, physical, and symbolic. Symbolic
models can in turn be mathematical or nonmathematical (e.g., n?raps), and math-
ematical models can be divided into analytical and numerical (depending on the
type of mathematical solution used). In general, computer simulation models are
symbolic, mathematical, and numerical.

Based on the type of modeling approach, computer simulation models can be
divided into empirical or mechanistic (Kelton et al., 1998). Empirical models use
empirical relationships between variables, whereas mechanistic models attempt
to model the detailed mechanisms through which variables interact. Values taken
by the parameters of empirical models have no restrictions, while those of mecha-
nistic (process-oriented) models are limited by their biophysical connotation; for
example, 5 to 13 is a likely range for C/N ratios of microbes. As such, mechanistic
models have more restrictions on their behavior but include more information
than the empirical simulators. Based on time, simulation models are classified
into static (variables do not change with time) and dynamic (variables change as
a function of time), and, based on how variables change, they are divided into
continuous and discrete. In continuous models, variables change smoothly over
time and are not restricted to integer values. In discrete models, variables change
in steps instead of smoothly and are usually restricted to integer values. Based on
the role of probability, models are divided into deterministic (no probability used)
and stochastic (probability used).

Most computer simulation models of the N cycle are partly mechanistic
and partly empirical. They are also dynamic because they model changes with
time, and they are continuous because the simulated variables (N pools) change
smoothly over time. For the most part, simulation models of the N cycle have been
deterministic because incorporating probability requires additional computation-
al time, consequently slowing down program execution. Fortunately, the increase
in computer power achieved over the last few decades has allowed model devel-
opers to start exploring stochastic implementations, which may generate more
realistic representations of natural systems.

Terminology Used in Simulation Modeling

Common terms used in simulation models include variable, parameter, constant,
and time step. A variable is a quantity that changes during a simulation. There
are state variables, which describe the state of the system; rate variables, which
determine the rate at which state variables change in dynamic models; auxiliary
variables, which are used to compute other variables; and driving variables, which
characterize the influence of external factors. Parameters of empirical models can
take any value but remain constant during a simulation; their value can change be-
tween simulations. In contrast, a constant is a quantity whose value never changes,
as in the case of the gravitational constant. Time step refers to the time increment
used to advance time during the simulation. It defines the temporal resolution,
which can change to fit the requirements of individual subsystems within the
model or environmental circumstances. Similar considerations apply to the spa-
tial resolution whereby a computational step is defined to integrate processes over
distances. For example, gas diffusion in soil calls for lower temporal and spatial
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resolutions than N biological processes, a requirement that complicates the simu-
lation of CO, release at the soil-air interface.

Steps in Model Development

Ideally, the development of a model would proceed according to the follow-
ing steps: (i) statement of objectives, (ii) system identification, (iii) specification of
component behavior, (iv) computer implementation, (v) verification, (vi) sensitivity
analysis, (vii) calibration, and (viii) validation (Jones and Luyten, 1998; Ford, 1999).

Staterment of Objectives

In this crucial but often overlooked step, the intended end product and its use
should be clearly stated to serve as a guide in subsequent steps. In general, simu-
lation models of the N cycle are developed for research or management purposes.
Research models are helpful to test hypotheses and increase our understanding of
a particular system. In contrast, management models are helpful to predict system
behavior, with the goal of improving its management. Although the distinction
between research and management models is not sharp because research models
can eventually become management models, it is important to clearly define ob-
jectives at the start of a modeling exercise to have a well-defined project goal.

System Identification

This step consists of identifying the system components (state variables and
rate variables), as well as the system environment (driving variables such as man-
agement practices and climate). The system components to be included depend
on the goals of the modeling exercise, as outlined in the first step. Once the system
components are identified, the system environment needs to be identified. The
environment is composed of all those variables that affect the system but are not
affected by the system (Neelamkavil, 1987; Jones and Luyten, 1998).

Specification of Component Behavior

The first task in this step is to select names for the variables to be included in
the model. Ideally, these names should be mnemonic to facilitate model develop-
ment and use. After selecting variable names, a flow diagram of the model should
be developed (Ford, 1999), and the mathematical form of the relationships be-
tween variables should be formulated. Coefficients, parameters, and constants for
these mathematical relationships should be obtained from the literature, if avail-
able, or from experiments specifically conducted for that purpose.

Computer Implementation

If a programming language is used to implement the model, a sequence com-
monly used for the program consists of (i) declaration and documentation of vari-
ables, (ii) initialization of parameters and constants, (iii) initialization of state vari-
ables, and (iv) time/space loop. The time/space loop is an iterative calculation process
in which time/space is incremented by an amount selected for the temporal and
spatial resolution, rate variables are calculated, state variables are updated, and any
desired output is generated. When the time/space loop has progressed to the spatio-
temporal dimensions desired for the simulation, the program stops execution.
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Implementation of models using a programming language requires expertise
in the language of choice, as well as considerable time for correcting syntax er-
rors. If a visual programming tool (see below) is used to implement the model, the
programming code is written by the software as the flow diagram is developed
on the screen, and as relationships between variables are defined. Although the
model developer needs to become familiar with the visual programming tool of
choice, learning these tools usually takes much less time than learning the syntax
of a conventional programming language.

Verification

Verification consists of checking the computer code to ensure that it correctly
represents the mathematical model of the system. This is a step that needs to be
conducted independently of whether a regular programming language or a visual
programming tool is used for model development.

Sensitivity Analysis

A sensitivity analysis is conducted to identify parameters and/or driving vari-
ables to which the model is very sensitive. Identifying these parameters and/or
driving variables is important because it helps the developer to allocate resources
to measure the parameters and driving variables needed, and to simplify the mod-
el by removing processes that do not impact on the dynamics of the system. Those
parameters or variables t& which the model is more sensitive should be measured
with more accuracy than those to which the model is less sensitive.

A sensitivity analysis begins by identifying output variables of interest and es-
tablishing a set of best estimates of each parameter and driving variables. Simula-
tions are then run with a range of values for each parameter to observe changes in
the output variables of interest. There are several methods to combine the range of
values for each parameter in the simulation runs for sensitivity analysis. The most
comprehensive method uses a factorial combination of all parameter values to be
tested, allowing the determination of not only the main effect of each parameter,
but also the degree of interaction between parameters (Ford, 1999). One drawback
of this method, however, is that it may require a large number of simulations, as
indicated by the equation

Number of Simulations = (Levels of Each Parameter)Number of Parameters

According to this equation, it would require 177,000 simulations to run every com-
bination of 11 parameters at three levels for each parameter. It is clear that con-
ducting such a large number of simulations may require more time than the model
developer has available. Consequently, other methods have been developed for
sampling the different parameter combinations.

One of these methods is random sampling, in which the parameter values for
each run are selected at random. For example, in the Monte Carlo approach, the
value of each parameter for a given run is taken from a specified probability for
each parameter. Although random sampling requires fewer simulations than a
full factorial combination, it still requires a large number of simulations to ensure
a reasonable exploration of the sample space. Thus, other methods have been used
to reduce the number of simulations while still exploring all regions of interest of
the sample space. For example, Taguchi methods (Clemson et al.,, 1995; Ross, 1996)
use fractional factorial designs to evaluate the main effect of parameters as well
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changes in output caused by large changes in parameters or driving variables.
This analysis is conducted to investigate the range of values in which the model is
stable, and as such it has been called a stability analysis.

Model Cdlibration

Calibration consists of refining the parameter values to be used in a particular
situation. Ideally, a model should be calibrated with a data set collected for the
particular situation of interest to obtain the parameter values to be later used in
validation (see below). The data set used in calibration should preferably be inde-
pendent of the data set used in validation.
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Model Validation

Validation refers to the testing of the model to determine how well the simula-
tion results compare to reality (Smith et al., 1996). A paramount reality is the first
principle of chemistry: mass conservation. The model should display in the output a
balance between the masses coming in and out of the system (C, N, water, etc.). This
mass balance should be checked for every single simulation, as unwanted appari-
tions of mass gains and losses have an uncanny way of making their way even into
models that have been tested for many years, revealing an unsuspected mistake in
the coding. Once the mass balance has been checked, the comparison of simulated
to experimental data can be started. As stated above, ideally the validation data set
should be independent of the calibration data set. In some cases, however, models
are calibrated with several data sets, and the average parameter values are used to
validate the model with the same data sets. Some numerical procedures compute
the standard deviation on the estimated parameters, thus giving some insight on the
sensitivity of the parameter over the behavior of the system.

Several statistical tools have been used to calibrate a model and to evaluate
the “goodness of fit” between observed and simulated results. This evaluation uses

“figure of merit” functions such as the mean difference (M ;) between observed and
simulated values, the standard error of M + the average relative error of the simulat-
ed values, the maximum error, the root mean square error, the correlation coefficient,
confidence intervals for measured values, and analysis of lack of fit (Loague and
Green, 1991; Whitmore, 1991). In general, the root mean square error is the preferred
tool when measured values are not replicated, whereas the lack of fit analysis is the
preferred tool when measured values are replicated (Whitmore, 1991).

The statistical tools described above are useful but have limitations in that
they do not necessarily show trends of over- or underestimation. Graphical dis-
plays, on the other hand, can be useful to show trends and types of errors (Loague
and Green, 1991). For example, a graph of observed versus simulated results for a
given site can easily show trends in simulation errors. Similarly, a graph of maxi-
mum, minimum, and median values for observed and simulated results can be
useful to show types of errors across different sites.
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The steps in model development described above are general and do not neces-
sarily guarantee the achievement of the stated objectives by the end of the last step.
Once the validation step is completed, one or more iterations through the different
steps may be needed to further refine the model or improve its performance.

Software Tools

Most computer simulation models have been implemented in process-oriented
programming languages such as FORTRAN, which commonly lack the structure
and flexibility to develop user- and developer-friendly models. The current avail-
ability of object-oriented languages such as C++ allows more structured and easier/
understand implementations. Also, recent versions of FORTRAN (e.g., Absoft Pro
FORTRAN and Lahey/Fujitsu) that support window and mixed-language program-
ming promise to rejuvenate a simulation tool that has withstood the challenge of
time. Although to date very few N models have been developed with these new
languages (Shaffer et al., 2000), their use is expected to increase in the future.

One of the factors that has limited the development of simulation models is
the need for developers to have expertise in the programming language of choice.
In recognition of this limitation, new software tools have been designed to allow
developers to create models without having to write programming code. These
visual software tools use graphical icons to represent state and rate variables, al-
lowing the user to build models by simply dropping icons on a “working space”
and joining them according to the desired model structure. As the model struc-
ture is graphically built and the mathematical relationships between variables
are defined, the software automatically writes the code to implements the mod-
el. Examples of these tools are Stella (High Performance Systems, Hanover, NH),
ModelMaker (Cherwell Scientific Limited, Oxford, UK), Vensim (Ventana Systems,
Belmont, MA), Powersim (Powersim Corp., Herndon, VA), and VisSim (Visual So-
lutions, Westford, MA). A Stella implementation of the N model NLEAP (Shaffer
et al., 1991) is currently available (Bittman et al., 2001), and more implementation

of N models with similar tools are likely in the future.

Nitrogen Models

Simulation models of the N cycle attempt to capture the main processes or
transformations in the system of interest. Models simulate the rate of these pro-
cesses or transformations by using different types of kinetics. In this section we
first review the most commonly used types of kinetics and then we describe the
different kinetic approaches used to model some of the most important transfor-
mations in the N cycle.

Commeon Kinetic Models

Zero-Order Kinetics

In zero-order kinetics, the rate of transformation of substrate S into product P is
constant and independent of the concentration of § (zero order with respect to 5):

S=>P
dS/dt = —k[S]° = -k [1]
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where k is a term commonly called the zero-order rate constant. According to the
modeling terminology described above, k is a parameter rather than a con-
stant, and therefore it will be referred as a zero-order rate coefficient. Integrat-

ing Eq. [1] vields

5t = 5{J + kt [2]
where S, is the substrate concentration at time ¢, and S, is the substrate concentra-
tion at time 0.

First-Order Kinetics

In first-order kinetics, the rate of transformation of substrate S into product P
is proportional to the concentration of S (first order with respect to S):

dS5/dt = —k[S]' = —k[S] [3]
where k is the first-order rate coefficient. Integrating Eq. [3] yields
§ =g g [4]

Second-Order Kinetics

In one type of second-order kinetics, the rate of transformation of substrate §
into product P is proportional to the square of the concentration of S (second order

with respect to S):

dS/dt = —k[S]? [5]
where k is the second-order rate coefficient. Integrating Eq. [5] yields
5,=5/(Skt +1) i [6]

In another type of second-order kinetics, the rate of transformation of substrate
S into product P is proportional to the concentration of S and to the concentration of
microbial biomass B (first order with respect to S and B) (Simkins et al., 1986).

dS/dt = —k[S][B] [7]
If the microbial biomass in turn grows according to first-order kinetics, then
dS/dt = -k[S]Be™ [8]

where B is biomass at time 0, and r is the first-order rate coefficient for micro-
bial biomass.

Integrating Eq. [8] yields

S, = 5exp{(kBy/r)[exp(rt) — 1]} 9]

Michaelis-Menten Kinetics

Michaelis-Menten kinetics was developed in 1913, when Michaelis and Men-
ten proposed a theory to explain the rate of a reaction that involves a substrate, an
enzyme, and a product:

FySe—yps & p
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where E is the enzyme, S is the substrate, ES is the enzyme-substrate complex, P
is the product, and k is a rate coefficient. The rate of formation of product P is first
order with respect to ES:

dP/dt =Kk[ES] [10]

The concentration of E a short time after the start of the reaction can be cal-
culated as

(E] = [E], - [ES] [11]
where [E], is the initial concentration of E. Also, the dissociation constant K_ for
the ES complex can be calculated as

K, = [E][SV/[ES] [12]
Substituting Eq. [11] into Eq. [12] and solving for [ES] yields

[ES] = [E][SV(K,, +[S]) (13]
Substituting Eq. [13] into Eq. [10] yields

dP/dt =i[E] [SI/(K_ +[S]) [14]

The expression k[E], represents the maximum velocity of the reaction, which occurs
when all the enzyme molecules are in the complex form ES. Therefore if V_=KE],

dP/dt=V_[S)/(K_+TS]) [15]

Equation [15] is the common expression for Michaelis—-Menten kinetics. The
Michaelis-Menten constant, K_, corresponds to the substrate concentration at which
half of the maximum reaction rate (1/2 V) is achieved. When the substrate concen-
tration is very low, K+ [S] is approximately equal to K_, and the reaction is equiva-
lent to first-order kinetics. When the substrate concentration is very high, K_+[5]is
approximately equal to [S], and the reaction is equivalent to zero-order kinetics.

Michaelis-Menten kinetics is commonly used to model the transformation
of substrates that are present in the soil solution. Parameters for the Michaelis—
Menten equation (V, and K ) are best determined by nonlinear curve fitting of Eq.
[15]. A less preferable approach is to convert Eq. [15] into a linear form and use
linear regression to find slope and intercept values, which in turn can be used to
estimate K_and V_ values (Miiller, 1999).

Monod Kinetics

In Monod kinetics, the rate of transformation of substrate S is proportional to
the rate of growth of a microbial population B that uses substrate S (Koch, 1998).
The rate of growth of the microbial population is given by

dB/dt = uB [16]

where p=(V_[SDH/K_+[S]), V,_ is the maximum rate of growth, and K isaconstant.
The rate of transformation of substrate S is modeled as

dS/dt =—-dB/dt x 1/Y [17]

where Y is the efficiency of biomass B (biomass formed/substrate used).
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In Monod kinetics it is necessary to model both B and § to obtain estimates of
S at any point in time. Simkins and Alexander (1984) derived a modified equation
for Monod kinetics for cases in which modeling biomass B is not desired:

ds/dt =~(V, [SD/K,, +[S)(S, + B/Y - 5) (18]

where S is the concentration of S at time 0, 5, is the concentration of S at time ¢, B, is
the concentration of biomass B at time 0, and Y is the efficiency of biomass B.

Temperature and Moisture Factors in Simulation Models

The kinetic equations described above are useful to describe the rate of a pro-
cess at constant environmental conditions. However, simulation models devel-
oped to simulate field conditions need to have kinetic equations that are modified
based on environmental conditions. Therefore, simulation models usually include
factors that reflect temperature and moisture conditions in the field.

Temperature Factors

Different approaches have been used to develop temperature factors for sim-
ulation models. Among them are the Arrhenius equation and the Van't Hoff funec-
tion, as well as other linear and exponential functions.

Arrhenius Equation

In 1889 Arrhenius found that the effect of temperature on many reactions
could be described by the equation

k=Ae*t KT [19]
where k is a rate coefficient, A is the frequency factor (frequency of collisions be-
tween reactant molecules), E_ is the activation energy, R is the gas constant, and T
is absolute temperature. The following temperature factor (TF) can be derived to
correct a rate coefficient (k,) measured at a given reference temperature (T,) to be
used at a different temperature (T):

TE=kJk, == MrTT [20]
If T,~ T, =10, then TF ="/ (M7 = 9  which is defined as the proportion by

which the rate of a reaction changes as the temperature changes by 10°C. Accord-
ing to the Arrhenius equation, Q,, varies with temperature.

Van't Hoff Function

In the Van't Hoff function, the temperature factor for correction of a rate coef-
ficient can be calculated as follows:

TF = k/k, = QT2 Twn0 [21]

where Q,is a constant representing the ratio by which the rate coefficient changes
for a temperature increase of 10°C. In contrast to the Arrhenius equation, Q, in the
Van't Hoff function does not vary with temperature.

Other Linear or Exponential Functions

Many authors have shown that the Q, (defined as the ratio by which the
rate constant changes for a temperature increase of 10°C) for organic matter de-
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composition and N mineralization varies with temperature (Addiscott, 1983; Ellert
and Bettany, 1992; Kirschbaum, 1995). Because in many cases these changes in Q,
could not be adequately described by the Arrhenius equation, some researchers
have proposed different functions. For example, Vigil and Kissel (1995) proposed
polynomial (TF = —0.010 + 0.039T — 0.0147%* + 0.00036T2%) and exponential (TF =
0.0106e"#"") temperature factors for N mineralization from crop residues. Expo-
nential temperature factors have also been proposed by Jenkinson et al. (1987) (TF
=47.9/{1 + exp[106/(T + 18.3)]}) and Kirschbaum (1995) {TF = exp[-3.432 + 0.168T(1
- 0.5T)/36.9]} for organic matter decomposition, and by McMeekin et al. (1988) (TF
=a(T—-T N1 —exp[b(T-T, )]} for bacterial growth. Stark (1996) used a general-
ized Poisson density function to describe the effect of temperature on nitrification.
The different approaches used for temperature correction have in many cases led
to different temperature factors for the same transformation process.

Soil Water Content Factors

The effect of soil water content on N processes has been expressed with fac-
tors based on soil water potential, soil water content, and water-filled porosity.

Functions Based on Soil Water Potential

Functions based on soil water potential are commonly of the following form
(Andrén and Paustian, 1987):

MF = [log(-y) - log(vy,,,)J/[log(-v,,,) — log(v,,,)], fory <y [22]
where MF is the moisture factor,  is the actual soil water potential in MPa, y_

is the minimum water potential at which there is activity, and v, is the optimum
water potential for activity.

Functions Based on Soil Water Content

Functions that use soil water content commonly have a form similar or related
to the following equation (Myers et al., 1982; Godwin and Jones, 1991):

MF =[6-6,]/[6,,—6,], for6<0,_ (23]

where 0 is the actual soil water content, 6, is the minimum soil water content at
which there is activity, and 6, is the optimum soil water content for activity.

The optimum soil water content for a microbially mediated transformation
would be expected to vary depending on the soil because microorganisms are
expected to respond to water potential, not soil water content. Nevertheless, for
a given soil, moisture factors expressed via soil water content may be as effective
as moisture factors expressed via soil water potential. For example, Kladivko and
Keeney (1987) found that N mineralization rates could be linearly related to rela-
tive soil water content or to the logarithm of soil water potential.

Functions Based on Water-Filled Porosity

Functions based on water-filled porosity are commonly linear or exponential.
For example, Grundmann et al. (1995) proposed a moisture function for nitrifica-
tion that is linear below the optimum water-filled porosity and exponential above
the optimum water-filled porosity.
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MEF = [exp(A/B)/(WFP, - WEP,_)J(WFP - WFP_) [24]
where A = (WFP,,, - WFD, JWEP - WFF, ), B = (WEP,, - WEP, , )(WFP - WFP_ ),

WEP is the actual water-filled porosity, WFP__ is the maximum WEFP (lack of oXy-
gen reduces activity to zero), WFP . is the WFP at which maximum activity is ob-
tained, and WFP__ is the minimum WEP (lack of water reduces activity to zero).

Relationship between Temperature and Water Content Factors

Both temperature and moisture factors are usually included in kinetic equa-
tions that describe the rate of N transformation processes. These factors can be
combined in different ways to express their overall effect on the process. One ap-
proach is to multiply both factors, which implicitly assumes that the factors are
independent in their effect:

dS/dt = -k x S x MF x TF [25]

where MF is the moisture factor, and TF is the temperature factor.

Another approach is to select the minimum of the two factors, which assumes
that the most limiting factor is the one that controls the rate of the transforma-
tion process:

dS/dt = -k x § x Minimum(MF, TF) [26]

Some models use the geometric means of the two factors, implicitly assuming
the existence of some interaction between the factors:

dS/dt =k x S x (MF x TF)\2 [27]

A few models have used a function that describes the main effects of tempera-
ture (T) and moisture (M), as well as their interaction: ™

dS/dt=—k x S x AM, T) [28]

This function has been described as a first- or second-order polynomial with
an interaction term (Kowalenko et al., 1978; Cassman and Munns, 1980; Quemada
and Cabrera, 1997b):

AM, T)=a+bM+cT +dMT [29]

or as a combination of linear and exponential equations (Quemada and Cabrera,
1997b):

A, T)=a+bT +exp[(d +c 1/T) x M] [30]

Because many studies have shown the existence of interaction between tem-
perature and water content on decomposition and N mineralization processes
(Cassman and Munns, 1980; Ropper, 1985; Doel et al., 1990; Quemada and Cabre-
ra, 1997b), more effort should be spent on developing these types of functions for
simulation models. As an alternative, Grant and Rochette (1994) proposed implic-
itly modeling the effect of temperature and moisture on substrate availability and
microbial activity. A detailed modeling of these effects may adequately simulate
the observed interaction between temperature and moisture.
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Models of Nitfrogen Processes

The most important processes related to the N cycle in soil are N mineraliza-
tion and immobilization, nitrification, denitrification, and ammaonia volatilization.
In this section we describe the different approaches used to model these processes.

Nifrogen Mineralization and Immobilization

Mineralization is the release of NH, from the soil organic matter (SOM); im-
mobilization is the incorporation of inorganic N in the SOM. The first system-
atic study of rates of net N mineralization was performed by Stanford and Smith
(1972), who found that the release of inorganic N in many soils was proportional
to the concentration of a hypothetical soil organic fraction (first-order kinetics),
which they called the potentially mineralizable N, or N_. It is a one-pool model
that is still used to quantify the release of inorganic N from SOM, crop residues,
manures, and other organic compounds. The one-pool approach is sometimes re-
placed by several pools decaying in parallel to give a better account of net N min-
eralization kinetics (e.g., Bonde et al., 1988; Chen and Lee, 1997; Aggangan et al.,
1998; Bridgham et al., 1998).

Nitrogen mineralization and immobilization are transformations driven by
the energy accumulated in the soil heterotrophic microbial population through
the decay of SOM and other organic compounds (Jansson and Persson, 1982).
Thus, mechanistic models of mineralization and immobilization should include at
least two types of organic pools, some with parameters and abiotic linkage func-
tions relevant to the physiology of microbes, and some disposed in the flow struc-
ture to be a carbon source for the microbial biomass.

Inorganic N immobilization is observed when organic chemicals (e.g., plant
residues) with high C/N ratio are added to soil. This transformation is rationalized
as the process that maintains the C/N ratio of the microbial biomass that grows on
the added residues. Thus immobilization starts if

(dC/dH)/CN, < (dC/dt) x EFFAC/CN, [31]

where dC/dt is the rate of residue decay, EFFAC is the efficiency of C incorporation
in the microbial biomass, and CN, and CN, are the C/N ratios of the residues and
microbial biomass, respectively (Beek and Frisel, 1973). When the inequality is
reversed (Eq. [31]), residues supply more N to the microbial biomass than needed,
and the excess is mineralized as NH,. ;

If the estimated amount of N required for immobilization is larger than the
amount of inorganic N available in the soil,

[(dC/dt) x EFFAC/CN, - (dC/d#)/CN ] > Available Inorganic N [32]

The amount of N immobilized has to be adjusted so that it is equal to the amount
of inorganic N available. This is accomplished by any one of the following three
options: (i) reducing the rate of decay (dC/d¢); (ii) reducing the efficiency of the
microbial population (EFFAC), thus increasing the rate of CO, release from soil; or
(iii) increasing the C/N ratio of the microbial biomass (CN,).

In the absence of residues (soils kept fallow for several years), soils mineral-
ize the SOM to release NH,, and the single exponential model (N, model) can be
satisfactorily used. However, this release of NH, hides a gross N immobilization
that runs concomitantly with gross N mineralization, as revealed by the use of
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tracer N (Broadbent, 1965). This parallel occurrence of mineralization and immo-
bilization is called the mineralization-immobilization turnover (MIT). It cannot be
simulated by the N, mineralization model or Eq. [31], which assumes either min-
eralization or immobilization, each process being triggered by the presence of resi-
dues. The simultaneous occurrence of mineralization and immobilization (MIT) in
the absence of residues is simulated by assuming that mineralization results from
the growth of microbes feeding on microbes (microbial successions) with C/N ra-
tios that fulfill the reverse of Eq. [31], while NH, immobilization is driven by the
growth of microbes on a soil organic pool with a high C/N ratio (Eq. [31]) that is
formed during the microbial succession (Molina et al., 1983). There are, however,
other mechanisms that account for N immobilization even in the absence of resi-
dues with high C/N ratio.

Incorporation of N into the soil microbial biomass can occur through (i) the
direct absorption of organic molecules (e.g., amino acids added to soil) or (ii) the
absorption of NH, after deamination (mineralization) of organic chemicals (e.g.,
amino acids released from decaying microbes during microbial succession before
they are absorbed by the growing cells). The direct absorption of residues’ amino
acids has been amply documented (Barak et al., 1990; Barraclough, 1997). Whether
endogenous amino-N compounds are directly absorbed or are first deaminated
is a question that has been resolved by considering that changes in added tracer
NH, concentrations will be less pronounced when nontracer amino groups are di-
rectly absorbed rather than first deaminated. Comparison of the two hypotheses
(amino-N vs. NH, incorporation) represented in two models of N transformations
showed that the microbial biomass in the absence of residues immobilizes N as
NH, (Molina et al., 1990; Hadas and Molina., 1993). Another peculiarity of this
process that has to be taken into consideration by models is that NO, is not immo-
bilized, in contrast to immobilization driven by residuesthat can use either NH , or
NO, (Broadbent, 1965). Analysis of N immobilization data by some models would
indicate that NO, immobilization can occur during MIT, albeit to a lesser degree
than with NH, (Mary et al., 1998).

Because of the close relationship that exists between organic N and C decom-
position, most models of N mineralization and immobilization include a model
of C decomposition. Also, because the heterotrophic microbial population plays a
key role in N mineralization and immobilization, many models of N mineraliza-
tion and immobilization also include a model for soil microbial biomass growth.

In the following section we review the general structure of selected models
(CERES-N, NCSOIL, CENTURY, Jenkinson model, van Veen and Frissel model,
PHOENIX, Verberne model, Hassink and Whitmore model). These models rep-
resent most of the different approaches that have been used to model residues
and SOM decay in concurrence with the mineralization-immobilization process.
Results of the evaluation of some of these models (CANDY, CENTURY, DAISY,
DNDC, Hurley-1TE, NCSOIL, Roth-26-3, SOMM, and VERBEN E) in terms of their
ability to simulate the dynamics of the SOM during long-term field experiments
have been presented by Smith et al. (1996).

CERES-N

The CERES-N model (Godwin and Jones, 1991) is a relatively simple model
derived from the model PAPRAN (production of arid pastures limited by rainfall




708 Cabrera, Molina, & Vigil
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Fig. 18~1. Nitrogen flow in the CERES-N model.

and nitrogen) (Seligman and van Keulen, 1981). There is one SOM pool (humus)
and three crop residue pools (carbohydrate, cellulose, and lignin) (Fig. 18-1).

The division of residues into carbohydrate, cellulose, and lignin pools is conve-
nient for modeling purposes because these compounds decompose at different rates
and can be measured with routine analytical procedures. CERES-N assumes that 20%
of the residue organic matter goes to carbohydrates, 70% to cellulose, and 10% to lig-
nin. The same assumptions are used to divide residue N into carbohydrate, cellulose,
and lignin N pools. It should be noted that these percentages are reasonable for ma-
ture cereal residues, but they may lead to incorrect simulations for other crop residues.
For example, Quemada and Cabrera (1995, 1997a) found that entering the actual val-
ues measured in cover crop residues (oats, rye, crimson clover, wheat) resulted in bet-
ter CERES-N simulations of net N mineralized than using the default values.

Both gross N mineralization (dN/dt) and organic matter decay (dC/dt) from
each of the residue pools follow first-order kinetics and take into account tempera-
ture (TF), soil water content (MF), and C/N ratio (CNRF) factors.

dC/dt or dN/dt = -RDECR x TF x MF x CNRF x POOL [33]

where RDECR is the first-order rate coefficient for carbohydrate, cellulose, or lignin;
POOL is the organic matter or N in the carbohydrate, cellulose, or lignin pool.

It is assumed that 20% of the gross N mineralized goes to humus N and 80%
goes to the inorganic N pool. Nitrogen immobilization is calculated taking into
account that microorganisms require 0.02 g N per gram of organic matter decom-
posed. This value was obtained by assuming that microorganisms have an effi-
ciency of 0.4 (g C assimilated per g of C decomposed) and a C/N ratio of 8, and that
organic matter contains 400 g C kg™'. The amount of N required for immobilization
is computed as the difference between the amount of N required by the microor-
ganisms (0.02 g N/g OM) and the amount of N present in the decomposing residue
(Pool N/Pool OM; g N/g OM).

dN/dt, = Minimum[dCfdtdmmp
% (0.02 - Pool N/Pool OM), Inorganic N Available] [34]
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Fig. 18-2. NH, flow in the NCSOIL model.

If the estimated amount of N required for immobilization is larger than that
available in the inorganic N pool (Inorganic N Available), then the amount of N
immobilized is set equal to the amount available in the inorganic N pool, but the
rate of decay is not changed. This is equivalent to reducing the amount of N re-
quired by microorganisms, which can be achieved by reducmg their efficiency
and/or increasing their C/N ratio.

Mineralization of N from humus follows first-order kinetics and is modified
in a multiplicative manner by the same temperature and moisture factors (TF and
MF) used for residue decomposition. The use of the same temperature and mois-
ture factors for residue and SOM decomposition may be adequate when residues
are incorporated into the soil but may not be appropriate when residues are left on
the soil surface (Quemada and Cabrera, 1997b).

NCSOIL

INCSOIL is a submodel of total and tracer C and N transformations (Molina et
al., 1983) developed as one of the C-N submodels of NTRM (N, tillage, and crop-
residue management model) (Shaffer and Larson, 1987) and later incorporated
into NCSWAP/NCSOIL (Clay et al., 1989; Molina, 1996; Molina et al., 2001) (www.
soils.umn.edu/research/ncswap-ncsoil). NCSOIL is also available as a stand-alone
program to simulate soil incubation in constant environmental conditions. It is
structured around three SOM pools (Fig. 18-2). Pool I represents the microbial
biomass; Pool IT and Pool III are the easily mineralizable and stable SOM, respec-
tively. Organic N and C (not represented in Fig. 18-2) flow from residues to Pool I,
Pool II, and Pool III with feedback loops from the SOM pools to Pool I, including
that from Pool I to Pool I to simulate microbial successions. Figure 18-2 illustrates
the mineralization-immobilization turnover when N immobilization by Pool I in-
volves NH, exclusively.
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Fig. 18-3. Nitrogen flow in the CENTURY model. 0.M., organic matter.

As a stand-alone model, NCSOIL has two residue pools and assumes constant
temperature and moisture. As a subroutine of the model NCSWAP/NCSOIL, four
organic chemical pools (e.g., manure, pesticides) in addition to roots, root exudates,
and residues from three different crops are available; driving variables include man-
agement and climatic conditions. Residues, Pool II, and Pool IIl decay according to
first-order kinetics, while Pool 1 decays with either first-order or Monod kinetics.
Residues, Pool I, and Pool II are divided into labile and resistant components. Till-
age moves C and N from the resistant fraction of Pool II to its labile fraction.

CENTURY

The CENTURY model was developed to analyze long-term changes in N and
C in soil (Parton et al., 1987). It considers surface and buried residue, each of which
has structural (slow) and metabolic (fast) components. Turnover times are 1 to 5 yr
for structural components and 0.1 to 1 yr for metabolic components. The amounts of
structural and metabolic components in the residue are determined by the lignin/N
ratio. Soil organic matter is divided into active, slow, and passive pools (Fig. 18-3).
The active pool consists of live microorganisms and microbial products, as well as
organic compounds with a short turnover time (1-5 yr). The slow pool is organic
matter that is physically or chemically protected and has a turnover time of 20 to 40
yr. The recalcitrant pool has compounds with a turnover time of 200 to 1500 yr.

The transfer of plant residue to structural or metabolic pools is determined by
the lignin/N ratio (L/N) of the residue:

FM =0.85 - 0.018L/N [35]

where FM is the fraction of residue that goes to metabolic pool.
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Fig. 18-4. Carbon flow in Jenkinson et al.’s model.

This approach has the advantage of using easily measurable plant compo-
nents to divide residue into different pools. The decomposition of the C pools fol-
lows first-order kinetics modified by moisture (MF) and temperature (TF) factors
in a multiplicative manner.

The rate coefficients for surface residue are assumed to be 20% lower than those
for buried (root) residue. All rate coefficients of decomposition are constant, except
for those for surface and buried structural litter, which decrease with lignin content,
and that for the active organic matter pool, which decreases as the amount of silt
plus clay in the soil increases. Also, as the amount of silt plus clay increases, the frac-
tion of the decomposed active pool that is evolved as CO, decreases. These effects of
silt plus clay are intended to model the protection of microbial biomass and SOM in
fine-textured soils and are features not present in CERES-N and NCSOIL.

Jenkinson et al.’s Model

Jenkinson et al. (1987) developed a model that includes a relatively simple
submodel of microbial biomass and its effect on organic matter decomposition
(Fig. 18-4). This model was initially developed to study the dynamics of organic
matter at Rothamsted and does not include separate C and N submodels. There
are two residue pools (decomposable and resistant), two types of microbial bio-
mass (zymogenous and autochtonous), and two pools of SOM (humus and biologi-
cally inert organic matter). The zymogenous biomass decomposes fresh residues
to form zymogenous biomass, humus, and CO,. The autochtonous biomass de-
composes humus to form autochtonous biomass, humus, and COZ.
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Microbial N-Containing
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+ Lignin

S

Ammonium

Fig. 18-5. Nitrogen flow in van Veen and Frissel’s model. OM, organic matter.

The decomposition rate of all pools follows first-order kinetics and is modi-
fied by temperature and moisture factors in a multiplicative manner. The emission
of CO, is determined by the amount of inorganic colloids in the soil, as indicated
by the cation exchange capacity of the inorganic soil components. As the inorganic
cation exchange capacity increases, the proportion of decomposed C released as
CO, decreases to simulate the protective effect of inorganic colloids on soil micro-
bial biomass and organic matter.

Van Veen and Frissel’s Model

Van Veen and Frissel (1981) developed a model to study the behavior of N
in agroecosystems in which they assumed that each pool was decomposed by a
different type of microbial population. The model has three residue pools (carbo-
hydrate, cellulose, and N-containing organic substances) and three organic matter
pools (active, active plus lignin, and old). Two of the residue pools (carbohydrate,
cellulose) contain only C, whereas the third pool (N-containing substances) con-
tains C and N. One of the organic matter pools (active) contains only C, and the
other two pools (active plus lignin, old) contain both C and N (Fig. 18-5).

Itis assumed that only a fraction of the total microbial biomass is involved in
the decomposition of a given C pool x. This fraction is proportional to the ratio of
the amount of C in pool x (C,) to the total amount of C in all pools (C,). The growth
of this fraction of the total microbial biomass is estimated using Monod kinetics
for the three residue pools and for the active organic matter pool.

dB/dt =V, CIIK,,+CIBC/C, [36]

(growth,x) mx x
where V__is the maximum rate of microbial growth on pool x, C_is the C in pool
x, K, , is the C concentration at which one-half of V.. 1s achieved, B is the total mi-
crobial biomass, and C, is the sum of C in all pools.

The total decomposition of pool x (decomposing under Monod kinetics) is es-
timated taking into account the efficiency of the microbial biomass (Y). The active
plus lignin organic matter pool (Cy) decomposes according to first-order kinetics,
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Fig. 18-6. Nitrogen flow in the Phoenix model. SOM, soil organic matter.

and the growth of the corresponding biomass (B,) is calculated taking into account
the microbial biomass efficiency (Y,).

Nitrogen mineralization from pools that contain N is estimated by dividing
the rate of decomposition by the C/N ratio of the decomposing pool. Nitrogen
immobilization by microbial biomass is calculated by dividing the growth of the
biomass by the C/N ratio of the biomass. If there is not enough N for microbial
immobilization, then growth of the biomass is reduced to zero and decomposition

is stopped.

Phoenix

The Phoenix model was developed to study C and N dynamics in grassland
soils (McGill et al., 1981). It includes four residue pools (standing dead metabolic,
standing dead structural, metabolic litter, and structural litter), two SOM pools
(humads and resistant), and two microbial biomass pools: bacteria plus actinomy-
cetes, and fungi (Fig. 18-6).

The allocation of residue into metabolic and structural pools is based on the
N/C ratio of the residue and on assumed N/C ratios for metabolic and structural
components in plants and microorganisms:

Eom{B, ~B{EB.~B) [37]
where F is the fraction of C allocated to structural components, B, is the N/C ratio
of residue (shoots, roots, or microorganisms), B, is the N/C ratio of metabolic com-
ponents (0.2 for plants, 0.33 for microorganisms), B, is the N/C ratio of structural
components (0.0066 for plants, 0.033 for microorganisms).

A fraction of the metabolic litter is assumed to be in the soil solution and is
subject to uptake by microorganisms according to Monod kinetics:
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dC,/dt=TF x MF x (V. _C /K, +C.)M [38]

where dC_/dt is the rate of uptake of metabolic litter C, TF and MF are tempera-
ture and moisture factors, V__ is the maximum rate of uptake, K is the concen-
tration at which one-half of V__ is achieved, M is the microbial C, and C_is the
metabolic litter in solution.

The structural litter is insoluble in water and constitutes not only substrate
but also habitat for the microorganisms. Its rate of decomposition (dC /d#) is first
order with respect to microbial biomass and is modified by factors for tempera-
ture (TF), moisture (MF), C/N ratio of the microbial population (CNRF), and mi-
crobial density (MDF).

To simulate competition between microorganims, the microbial density factor
(MDF) reduces the rate of decomposition as the ratio of microbial C to structural C
increases. To maintain the C/N ratio of microorganisms within certain limits, the
C/N ratio factor (CNRF) reduces the rate of decomposition when the C/N ratio is
below 15 for bacteria and below 20 for fungi. It is assumed that 97.5% of the de-
composed structural litter is retained by the microbial pools, with the remaining
2.5% going to the humads pool.

The humads pool also receives a transfer of C from the metabolic litter, which
is modeled according to first-order kinetics and is modified by a temperature fac-
tor. As in the case of metabolic litter, a fraction of the humads pool is in solution
and decomposes according to Monod kinetics, modified by temperature and mois-
ture factors. It is assumed that 50% of the decomposed humads is retained by the
microbial pools, and the remaining 50% is transferred to the resistant SOM pool.

The decomposition of the resistant SOM is first order with respect to the
amount of C in that pool and with respect to the microbial population, and it is
modified by temperature and moisture factors. All the decomposed C is retained
by microorganisms.

In contrast to N immobilization in the previously described models, N immo-
bilization in the PHOENIX model is modeled using Monod kinetics modified by
factors for temperature (TF), moisture (MF), and the variable CNRF set to either 1
or 0 (“on—off"” flag).

dN,_ __/dt=TF x MF x CNREF x (V

E—_— ma Y/ (K, + N)M [39]

where V___is the maximum rate of immobilization, K_ is the concentration at which

one-half of V__isachieved, N, is inorganic N in solution, and M is microbial C.
Similarly, N mineralization is modeled using first-order kinetics modified by

factors for temperature (TF), moisture (MF), and CNRF:
dN_, /dt=TF x MF x CNRF x k x N_ [40]

where k is the first-order rate constant and N_ is N in microbial biomass.

To control the C/N ratio of the microbial biomass, N immaobilization is de-
creased to zero when the C/N ratio falls below 5 for bacteria and below 10 for fungj,
and N mineralization is reduced to zero when the C/N ratio reaches 15 for bacteria
and 20 for fungi. The C/N ratios of the bacterial and fungal biomasses are used to
set CNRF (0-1) to initiate N mineralization or immobilization so that the C/N ra-
tios of bacteria and fungi are maintained within specified ranges. This approach
leads to fluctuating C/N ratios for the microbial biomass. This is in contrast to the
fixed C/N ratios used in many of the previously described models.
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Fig. 18-7. Nitrogen flow in the Verberne model.

Verberne Model

Verberne et al. (1990) developed a model to describe C and N cycling in soil, tak-
ing into account the effect of soil texture on decomposition processes. The model has
three residue pools that correspond to carbohydrates and proteins (decomposable),
cellulose and hemicellulose (structural), and lignified materials (resistant). There
are two pools of microbial biomass (protected and nonprotected), two pools of ac-
tive organic matter (protected and nonprotected), and one pool of stabilized organic
matter (Fig. 18-7). The division of microbial biomass and active organic matter into
protected and nonprotected pools is intended to simulate protection by clay and silt
fractions. All the pools decompose according to first-order kinetics.

The maximum amount of protected microbial biomass is defined as a frac-
tion of total organic soil C. If the microbial population is below this maximum
capacity, then the whole population is protected. If, on the contrary, the microbial
population is above this maximum capacity, then the amount in excess is consid-
ered nonprotected. Nonprotected biomass decomposes at a much higher rate than
protected biomass (k= 0.5 vs. 0.005 d).

Decomposing microbial biomass is distributed between the protected and
nonprotected organic matter according to a parameter that is a function of soil
texture. In soils with high clay content, a larger proportion of the decomposing
microbial biomass is routed to the protected organic matter. The rate of decompo-
sition of this protected organic matter is much lower than that of the nonprotected
organic matter. The C/N ratio of all the pools is constant, and therefore the N
fluxes are assumed to be proportional to the C fluxes.
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Fig. 18-8. Nitrogen flow in Hassink and Whitmore’s model.

Hassink and Whitmore's Model

Hassink and Whitmore (1997) proposed a new model of the physical protec-
tion of organic matter in soil (Fig 18-8). Previous models had simulated physical
protection by using the clay content of the soil to change the efficiency of utili-
zation (CENTURY, Jenkinson’s model), the rate of organic matter decomposition
(CENTURY), or the partitioning between protected and nonprotected organic
matter (Verberne model). These approaches have the drawback of not limiting
the amount of organic matter protection. In their model, Hassink and Whitmore
introduced the concept of a limited capacity for protection, similar to the concept
introduced in the Verberne model for the protection of microbial biomass.

The rate of formation of protected organic matter (C,..,) is calculated tak-
ing into account the fraction of the-protective capacity of the soil that is currently
available for protecting organic matter.

dc /dt=k x(1-8)C [41]

protected nonprotected

where k_ is the rate coefficient of protection, 6 is the protected organic matter di-
vided by the protective capacity of the soil, and C___ ... is the nonprotected or-
ganic matter.

By calibrating their model with a 10-yr data set including eight soils, Hassink
and Whitmore (1997) found that the protective capacity of the soil was related to
the soil clay content (R* = 0.76).

Protected organic matter can become unprotected through desorption, which
is modeled as a first-order reaction:

dC Jdt=—k,x C [42]

protected protected

‘where k, is the first-order rate coefficient of desorption.
The use of sorption-desorption kinetics appears to be a reasonable approach
to modeling the protection of SOM by clay and silt in soil.

Controlling Factors in Mineralization/Immobilization

As mentioned above, simulation of the N mineralization-immuobilization in-
volves the participation of a microbial succession driven by the energy provided
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by the decay of either the SOM pools (microbial pool included) or residues. All
models simulate the residue-driven process of N mineralization-immobilization,
but NCSWAP/NCSOIL is the only model that simulates the MIT and accounts for
the dynamics of tracer N (Molina et al., 1990; Nicolardot et al., 1994). The observed

exchange between inorganic and organic N is so rapid even in the absence of resi-
dues that its simulation requires a high rate of microbial succession obtained by a

high decay rate for the microbial pool (Nelson et al., 1979). Nevertheless, the mi-
crobial biomass is sustained by the decay of the other SOM pools that can drive the

MIT with the net result of N mineralization for many years. When the MIT is not

simulated and the model does not account for tracer N kinetics, net N mineraliza-
tion in the absence of residues is obtained by the release of inorganic N from one

or several SOM pools, as described in its simplest form by the N, model.

Mineralization-immobilization rates are controlled by the rates of residues
and SOM decay, which in turn are controlled by temperature. In general, these
rates are very small near 0°C and increase linearly or exponentially until they
reach a maximum at 30 to 40°C (Li et al., 1992; Rodrigo et al,, 1997). Rates are
commonly considered to decrease as temperatures increase above the maximum
temperature. Rodrigo et al. (1997) compared the temperature factors of nine C and
N transformation models and found large differences among them. Because these
differences can lead to different results for the same environmental conditions,
the authors concluded that more attention should be paid to consistency between
models. The use of the same temperature and moisture factors for residue and
SOM decomposition may be adequate when residues are incorporated into the
soil but may not be appropriate when residues are left on the soil surface (Que-
mada and Cabrera, 1997b).

Similarly, rates of mineralization-immeobilization are small at low water con-
tents, increase up to field capacity, and decrease as the soil becomes water satu-
rated. In CERES-N (Godwin and Jones, 1991), the moisture factor is 0 when the
soil is air dry and increases linearly to reach 1 at the drained upper limit (field
capacity). As water content increases above the drained upper limit, the moisture
factor decreases linearly to reach a value of 0.5 at saturation. DNDC (Li et al., 1992)
and NCSWAP/NCSOIL use a relationship observed for several soils by Linn and
Doran (1984): the moisture factor is 0 below 10% water-filled porosity and increas-
es linearly to reach 1 at 60% water-filled porosity. Above 60% water-filled porosity,
the moisture factor decreases linearly to reach values of 0.5 at 80% water-filled po-
rosity and 0.4 at 100% water-filled porosity. The optimum water potential for C'de-
composition processes has been reported to vary from -0.010 (Andrén et al., 1992)
to —0.178 MPa (Moore, 1986). In PHOENIX (McGill et al., 1981), different water
potential functions are used for bacterial and fungal activity to reflect their differ-
ent tolerance to water stress. In some cases, the moisture response functions differ
among models, which may lead to different simulated results under the same en-
vironmental conditions (Ma and Shaffer, 2001; McGechan and Wu, 2001).

The effect of the C/N ratio of the residues and SOM pools on the rate of residue
decay is considered by several models. The overall effect is to reduce the rate of resi-
due decomposition when the agents that decay are N starved. In CERES-N, the C/N
ratio factor has a value of 1 when C/N ratio is 25 and decreases exponentially as the
C/N ratio increases above 25. In NCSOIL/NCSWAWP, the C/N ratio factor decreases
exponentially as the ratio of the daily potential C decomposition to the available N
(N potentially released during decomposition + inorganic N) increases {Molina et al.,
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1983). In NLEAP (Shaffer et al., 2001) the C/N ratio factor has a value of 2.6 at C/N =
9,1.0 at C/N =25, 0.57 at C/N =40, and 0.29 at C/N = 100. The value of the C/N ratio
factor between these points is calculated by linear interpolation.

Nitrification

Nitrification is a two-step biological oxidation in which NH," is first oxidized
to NO,-, and NO,™ is subsequently oxidized to NO, (Alexander, 1977). The micro-
organisms responsible for this process (Nitrosomonas and Nitrobacter) derive en-
ergy from the oxidation reactions and require only CO, as a C source.

Modeling Approaches

The second step of nitrification is usually faster than the first step, and as a
result it is rare for NO,~ to accumulate in soils (Paul and Clarke, 1989). Consequently,
many simulation models consider nitrification as a direct conversion of NH," to NO,~.

The rate of nitrification has been modeled with a linear equation containing
NH,*, NO;-, and soil temperature (T) as independent variables (NTRM model
[Shaffer and Larson, 1987]):

dNO,/dt=a+bxTxNH, - N

+ c[log,(NH,-N)] +d(log10) (NO,” -~ N) [43]

Nitrification has also been modeled as a zero-order reaction modified by tem-
perature and moisture factors in a multiplicative manner (NLEAP model [Shaffer
et al., 1991]; GLEAMS model [Knisel, 1993]):

dNO,/dt =k, x TF x MF [44]
or modified by the minimum of temperature and moisture factors (NCSWAP
model [Molina et al., 1983]):

dNO,/dt = k;, x Minimum(TF, MF) [45]

The EPIC model uses first-order kinetics to model nitrification in soils (Wil-
liams, 1995):

dNO,7/dt = NH,[1 — exp(TF x MF x pHF)] [46]
where NH, is the ammonia in soil, and TF, MF, and pHF are temperature, moisture,
and pH factors.

SOILN is another example of a model that uses first-order kinetics for nitrifi-
cation. The ammonium that undergoes nitrification is that in excess of a maximum
nitrate/ammonium ratio (r__ ). The rate is also modified by moisture (MF), tem-
perature (TF), and pH (pHF) factors (Johnsson et al., 1987).

dNO,/dt =k x (NH, - NO,/r__ ) x TF x MF x pHF [47]

In CERES-N, nitrification is modeled according to Michaelis-Menten kinetics
(Godwin and Jones, 1991):

dNOa‘fdt =(40xN H4)f(90 +NH,)

x SNH T Minimum(MEFE, TF, pHF, NPF) [48]

where NH, is the concentration of ammonium in soil layer; SNH, is the total
amount of ammonium in soil layer; ME, TF, and pHF are moisture, temperature,
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pH factors; and NPF is the nitrification potential factor based on past nitrification
potential and current environmental limits on nitrification.

Similar approaches are used to model nitrification in the models DAISY (Han-
sen et al., 1991) and CANDY (Franko et al., 1995).

In more detailed models, Monod kinetics has been used to simulate the inde-
pendent growth of each of the two nitrifier populations: Nitrosomonas and Nitro-
bacter (Darrah et al., 1985a, 1985b, 1986a, 1986b). The growth of Nitrosomonas has
been modeled as

dNB /dt = (V, NH,)/(K_, +NH,) x NB, x TF x MF x IF [49]

whetre NB, is ‘Nitmsomonas biomass, NH, is the ammonium in the soil solution,
V1 is the maximum rate of growth, K__ is the ammonium concentration at which
growth rate equals 1/2 V_, TF and MF are temperature and moisture factors, and
IF is the inhibition factor due to pH and osmotic potential.

The production rate of NO," is proportional to the growth of the Nifrosomo-

nas population;

dNO,/dt = dNB, x 1/Y, [50]

~ where Y| is biomass formed divided by mol of NH,* used (or mol of NO,~ produced).

The growth of Nitrobacter has been similarly modeled as
dNB,/dt = (V_,NO,)/(K_, + NO,) x NB, x TF x MF x IF [51]

where NB, is Nitrobacter biomass, NQ, is nitrite in the soil solution, V__ is the maxi-
mum rate of growth, K_, is the nitrite concentration at which grc:n«vt?\2 rate equals
one-half of V_,, TF and MF are temperature and moisture factors, and IF is the
inhibition factor due to pH and osmotic potential.

The rate of production of NO,~ is proportional to the growth of the Nitrobac-
ter population: :

dNO,/dt =dNB, x 1/Y, (52]

where Y, is the biomass formed per mole of NO," used (or mol of NO,” produced).

Models that use Monod kinetics for nitrification include Phoenix (McGill et al.
1981) and van Veen and Frissel’s model (van Veen and Frissel, 1981). This detailed’
modeling approach to nitrification may be useful to study and describe situations
that lead to NO,~ accumulation in soils (Gee et al., 1990; Jones and Schwab, 1993;
Burnes et al., 1995; Smith et al., 1997; Chandran and Smets, 2000).

Because nitrifiers are autotrophic and require CQO, for their growth, Grant
(1994) developed a model for nitrifier growth that includes CO, as substrate and
NH, or NO," as the source of energy. The equation used to model Nitrosomonas
growth is as follows:

dNB /dt=TF x MF x V, x [NH/(K__+NH,)]
x (CO,/(K, + CO,) x NB, [53]

where NB, is the Nitrosomonas biomass, N H, is ammonia concentration in soil so-

lution, CO, is the CO, concentration in soil solution, V__ is the maximum rate of

growth, K is the ammonium concentration at which growthrateis12V_ K_ is
mi”

CO, concentration at which growth rate is 1/2 V.. and TF and MF are temperature
and moisture factors.
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In later work, Grant (1995) extended this model of nitrification by including
N,O evolution during nitrification, which is an important process for environ-
mental reasons.

Controlling Factors

The general form of temperature factors used to modify nitrification rates has
been described previously. Nitrification is considered to increase as temperature
increases from 0°C to a maximum temperature that varies from 20 to 35°C, de-
pending on soil type and geographic location (Malhi and McGill, 1981; Godwin
and Jones, 1991; Li et al., 1992; Grundmann et al., 1995).

The different functions of soil moisture used to modify nitrification rates have
also been described previously. In general, the effect of soil moisture on nitrifica-
tion varies among models. In CERES-N (Godwin and Jones, 1991), the moisture
factor is 0 at the lower limit of water content and increases linearly to reach 1 at the
drained upper limit (field capacity). Beyond the drained upper limit, the moisture
factor decreases linearly until it reaches 0 at saturation. In NCSWAP/NCSOIL and
DNDC, the percentage of water saturation is used to control the rate of nitrifica-
tion (Linn and Doran, 1984): the moisture factor is 0 when the water-filled porosity
is 0%, and increases linearly to reach 1 at 60% water-filled porosity; beyond that
point, the factor decreases linearly until it reaches a value of 0 at 100% water-filled
porosity. In PHOENIX (McGill et al., 1981), the moisture factor is 0 at a water po-
tential of -6 MPa and incteases exponentially to reach 1 at 0 MPa (saturation). It
should be clear from these examples that models differ in their effects of moisture
on nitrification. For example, at saturation the moisture factor is 0 for CERES-N
and 1 for PHOENIX. More research in this area seems warranted to obtain consis-
tency between models.

The soil pH effect on nitrification (pHE, 0-1) has been modeled with first-order
(EPIC [Williams, 1995]; CERES-N [Godwin and Jones, 1991]) or higher-order (Darrah
et al, 1986b) polynomials. SOILN (Johnsson et al., 1987) uses a pH factor of the form

pHF = (pH - pH,_)/(pH,, - PH,,) (54]

where pH is the soil pH, pH___ is the minimum pH for nitrification, and pH__ is
the maximum pH for nitrification.

The effect of osmotic potential (OP) on nitrification has been modeled with a
second-order polynomial (Darrah et al., 1986a) and with exponential functions of
the form k = a+ b exp(c x OP), where k is the rate of nitrification (Low et al., 1997).

Denitrification

Denitrification is a biological process in which microorganisms use NO,-,
NO,-, and N,O as electron acceptors (instead of O,), with the consequent produc-
tion and evolution of N,O and N, gases. The process occurs under anoxic condi-
tions and the microorganisms responsible for it require organic compounds as
energy and C sources (Alexander, 1977).

Modeling Approaches

Modeling denitrification presents a special problem because of the difficul-
ty of modeling anoxic microsites in the soil. Consequently, most comprehensive

7} Modeling the Nitrogen Cycle

models of soil-plant systems
out the soil according to a spe
uses zero-order kinetics, NLE
2000) use first-order kinetics,
Jones, 1991) use second-order

~dNO,/dt =k x MF x TE

where k is the second-order
ture factors, C is the concentr:
the nitrate concentration in sc

Michaelis-Menten kineti
2000) and SOILN (Johnsson e

—dNO,/dt = MF x TF  (

A similar type of Michael
(DB) is used in the Phoenix m

—dNO,/dt = MF x TF(V,

Van Veen and Frissel (19
mass (B) under anoxic condit
to calculate the rate of denitri

~dNO,/dt = dB/dt x 1/Y

Leffelaar and Wessel (19¢
soil samples incubated in the
late the growth of denitrifiers
NO,-, NO,, and N,O):

dB/dt=pB

where B is the denitrifier popt
CUE/(K,, + E)] is the growth 1
tion of electron acceptor ; 1 =
tively; p. - is the maximum
in solution; K and K, are the
The use of each electron a
maintenance requirements:

dE/dt = (g/Y g 71

where Y, is the maximum

maintenance coefficient with
The gases produced by d

dN,O/dt = (dE,/dt — di
dN/dt = (dE,/dt)

The model of Leffelaar a1
(Li et al., 1992), a model that
agricultural soils. To take into
rates based on each electron



Cabrera, Molina, & Vigil

odel of nitrification by including
1 important process for environ-

d to modify nitrification rates has
dered to increase as temperature
that varies from 20 to 35°C, de-
vialhi and McGill, 1981; Godwin
, 1995).
to modify nitrification rates have
ffect of soil moisture on nitrifica-
n and Jones, 1991), the moisture
ncreases linearly to reach 1 at the
Irained upper limit, the moisture
-ation. In NCSWAP/NCSOIL and
ed to control the rate of nitrifica-
5 0 when the water-filled porosity
rater-filled porosity; beyond that
5 a value of 0 at 100% water-filled
noisture factor is 0 at a water po-
reach 1 at 0 MPa (saturation). It
differ in their effects of moisture
10isture factor is 0 for CERES-N
eems warranted to obtain consis-

1as been modeled with first-order
es, 1991]) or higher-order (Darrah
987) uses a pH factor of the form

[54]

>H for nitrification, and pH___ is

ication has been modeled with a
1d with exponential functions of
of nitrification (Low et al., 1997).

hich microorganisms use NO,-,
D,), with the consequent produc-
»cess occurs under anoxic condi-
require organic compounds as

problem because of the difficul-
isequently, most comprehensive

LR R o b sl

G e e

i Modeling the Nitrogen Cycle 721

models of soil-plant systems consider denitrification to occur uniformly through-
out the soil according to a specified type of kinetics. NCSOIL (Molina et al., 1983)
uses zero-order kinetics, NLEAP (Shaffer et al., 1991) and RZWQM (Ahuja et al,
2000) use first-order kinetics, and other models such as CERES-N (Godwin and

Jones, 1991) use second-order kinetics:
~dNO,/dt =k x MF x TF x C x NO, ' [55]

where k is the second-order coefficient, MF and TF are the moisture and tempera-
ture factors, C is the concentration of water-extractable C in soil layer, and NO, is

the nitrate concentration in soil layer.
Michaelis-Menten kinetics is used in models such as LEACHM (Hutson,
2000) and SOILN (Johnsson et al., 1987):

~dNO,/dt = MF x TF x (V,NO,/(K,, + NO,) [56]

A similar type of Michaelis-Menten expression including denitrifier biomass
(DB) is used in the Phoenix model (McGill et al., 1981):

~dNO,/dt = MF x TE(V,_ NOY/(K + NO,)DB [57]
Van Veen and Frissel (1981) use the rate of growth of the heterotrophic bio-

mass (B) under anoxic conditions together with its efficiency of use of NO, (Y,.,)
to calculate the rate of denitrification:

~dNO,/dt =dB/dt x 1/Y,, [58]

Leffelaar and Wessel (1988) developed a detailed model of denitrification for
soil samples incubated in the laboratory. The model uses Monod kinetics to simu-
late the growth of denitrifiers and their use of the different electron acceptors (O,
NO,, NO,, and N,0):

dB/dt=pB [59]
where B is the denitrifier population; p is the growth rate=Z p; p =p. - [C/K_+
C)(E/(Ky, + E)] is the growth rate based on electron acceptor E; E, is the concentra-
tion of electron acceptor i; i = 1, 2, 3, 4 refers to O,, NO,7, NO,7, and N,O, respec-
tively; p,, _ is the maximum growth rate based on electron acceptor E; C is the C
in solution; K_ and K, are the Michaelis—Menten constants for C and E.

The use of each electron acceptor is calculated taking into account growth and
maintenance requirements:

dE/dt = (ug/Ye pae * My E/E)B [60]

where Y, . is the maximum growth yield on electron acceptor E, and my; is the
maintenance coefficient with respect to electron acceptor E..
The gases produced by denitrification are then estimated as

dN,O/dt = (dE,/dt — dE,/dt) [61]
dN,/dt = (dE /df) [62]

Ei max

The model of Leffelaar and Wessel (1988) was later incorporated into DNDC
(Li et al,, 1992), a model that simulates the evolution of N,O, CO,, and N, from
agricultural soils. To take into account field environmental conditions, the growth
rates based on each electron acceptor are multiplied by temperature and pH fac-
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Fig. 18-9. Nitrogen flow associated with ammonia volatilization.

tors. A moisture factor is not used because it is assumed that denitrifiers become
active at the onset of a rainfall event and remain active until the water-filled poros-
ity decreases to 40%.

Although most comprehensive models of soil-plant systems do not model
the development of anoxic microsites in soil, some researchers have developed
models of anoxia and denitrification (McConnaughey and Bouldin, 1985; Arah
and Vinten, 1995; Sierra et al., 1995). Furthermore, Arah and Vinten (1995) have
developed simplified approximations of these models for Incorporation into larg-
er models. These simplified approximations have been added to SLIM (Addiscott
and Whitmore, 1991), a solute leaching model, to estimate denitrification under
field conditions (Vinten et al., 1996). Future models of field denitrification are like-
ly to include similar approaches.

Controlling Factors

The different functions used to modify denitrification rates based on tempera-
ture are similar to the general temperature functions previously described. Deni-
trification is considered to increase from 0°C until it reaches a maximum at 40°C
(PHOENIX [McGill et al., 1981]) to 60°C (DNDC [Li et al., 1992]).

In PHOENIX, the moisture factor is 0 at water potentials lower than 0.1 MPa
and increases linearly to reach 1 at -0.03 MPa (field capacity). The factor stays at
1 between -0.03 and 0 MPa (saturation). NCSWAP/NCSOIL and DNDC refer to
the same percentages of water saturation as those used to control nitrification: the
denitrification moisture factor is 0 from 0 to 60% water saturation; beyond that
point, the factor increases until it reaches a value of 1 at 100% water saturation.
Thus, nitrification and denitrification occur simultaneously in the range of 60 to
100% water saturation.

The effect of pH on denitrification is not taken into account in most models.
However, in DNDC (Li et al., 1992), a linear pH factor is used to achieve a de-
creased reduction of N,O, as well as an overall decrease in denitrification as soil
pH decreases.

Ammonia Volatilization

Ammonia volatilization is the process of molecular diffusion and convective trans-
fer of NH, gas from the soil surface to the free air stream in the atmosphere (Fig. 18-9).
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Modeling Approaches and Controlling Factors

Several models of ammonia volatilization have been developed to simulate
ammonia loss from manures and fertilizers. A detailed review of several of these
models was presented by Ni (1999). In most mechanistic models of NH, volatiliza-
tion, the transfer of NH, from the soil surface to the atmosphere is expressed as a
function of a concentration gradient:

NH, Flux = r((NH,]_,~ [NH,],) [63]

where r is the convective transfer coefficient, [NH,]_ . is the NH, gas concentration
at the soil surface, and [NH,]__ is the NH, gas concentration in the free air stream.

Because in open fields [NH,] . is very low, many models assume this concen-
tration to be zero. Therefore, the NH, flux can be calculated by knowing the con-
vective transfer coefficient and the NH, gas concentration at the soil surface.

The mass transfer coefficient is usually modeled as a function of one or more
of the following variables: air velocity, temperature, surface roughness, air density,
and air viscosity. Ni (1999) presented a table with 12 approaches used by different
models to estimate this coefficient.

The NH, gas concentration at the soil surface is commonly estimated from
Henry’s constant and the NH, concentration in the soil solution:

[NH,],, = [NH,]_/Kh [64]

where [NH,]_ is the NH, concentration at the soil surface, [NH,]_, is the NH, in
the soil solution (mol N L-!), and Kh is Henry’s constant expressed as a dimen-
sionless ratio.

In this equation, the Henry’s constant is defined as a dimensionless ratio of
the liquid gas phase and molar gas phase concentrations, and it decreases as tem-
perature increases (log Kh =-1.69 + 1477.7/T, where T is absolute temperature
[Sherlock and Goh, 1985]). Therefore, the concentration of gaseous NH, at the soil
surface increases with temperature.

The concentration of NH, in the soil solution can in turn be estimated from
the dissociation constant of NH ", the concentration of NH, " in solution, and pH:

[NH,]_, = (Kd[NH,"]_)/[H'] [65]

where Kd is the dissociation constant, [NH,']_ is the concentration of NH,* in the soil
solution (mol N L), and [H'] is the concentration of H* in the soil solution (mol L.
The dissociation constant increases with temperature (log Kd = -0.09018
_ 2729.92/T, where T is absolute temperature [Sherlock and Goh, 1985]), so the
concentration of NH, in solution also increases with temperature. Ni (1999) lists
different forms of the dissociation constant used in different models.

To estimate the concentration of H* in the soil solution, some models include
a mechanistic model of soil alkalinity (Rachhpal-Singh and Nye, 1986; Sadeghi et
al,, 1988), whereas Ni (1999) uses a regression equation based on the ratio of CO,
release to NH, release.

Because it may not be practical to model or measure NH," in solution to cal-
culate the concentration of NH, in solution, Sherlock and Goh (1985) derived an
equation to estimate NH, in solution from total ammoniacal N in soil, which is a
variable commonly measured. Total ammoniacal N is made up of ammoniacal N
in exchangeable sites (mol N kg™) and ammoniacal N in solution (mol N L™). To

surf

surf

sol sol
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express both pools of N in the same units (mol N m~), ammoniacal N in exchange-
able sites (mol N kg™!) is multiplied by bulk density (kg m?), and ammoniacal N in
solution (mol N L) is multiplied by volumetric soil water content (L m=):

[NH,], = [NH]_/[6(1 + D)(1 + [H*]/Kd)] [66]

where [NH ], is the total ammoniacal N in soil (mol N m™), 8 is the volumetric
soil water content (L m~), and D is the ammoniacal N in exhangeable sites divided
by the ammoniacal N in solution.

Combining the equations presented above, Sherlock and Goh (1985) derived
the following equation for estimation of ammonia volatilization:

NH, Flux = (r[NH_]_)/[(Kh x 8(1 + D)(1 + [H*]/Kd)] [67]

This equation reflects the effects of water content, pH, and cation exchange
capacity on the rate of ammonia loss. Other factors implicitly reflected in the equa-
tion are air velocity (which affects r) and temperature (which affects Kh and Kd).

Hengnirum et al. (1999) presented a model of ammonia volatilization that is
also based on total ammoniacal N. This model considers the effects of temperature,
cation exchange capacity, and air velocity:

NH, Flux = K[NH ] _ x 1.080-™% x F__xF_ [68]

where K is the transfer coefficient, T is the temperature (°C), T, _ is the base tem-
perature at which K was determined, F, . is the cation exchange capacity factor =1
—0.033 CEC (cmol_100 pg g™), and F__=1.44 + 0.16 In(air velocity; km h™).
Ammonia volatilization has also been modeled with empirical regression
equations. For example, Katz et al. (1998) developed an equation to estimate am-
monia volatilization after application of liquid cattle manure to grassland. The
variables included are total ammoniacal N in the manure, saturation deficit of the
air, and application rate:

NH, Flux (kg N ha) = (19.41 TAN +1.10 SD — 9.51)(0.02 AR + 0.36) [69]

where TAN is the total ammoniacal N of the manure (g N kg™), SD is the satura-
tion deficit of the air (mbar), SD = (1 — RH) x 6.112 exp[(17.67 T)/(243.5 T)], T is
temperature (°C), RH is relative humidity, and AR is application rate (t ha™).

Although empirical regression equations are limited in terms of improving
our understanding of the processes involved, they may be useful for managing
applications under specific conditions.

tot:

Current Status and Research Needs

Mechanistic models moved our knowledge of the C and N cycles from a qual-
itative description to a dynamic dimension controlled by rates of transformations.
Models have shown the large extent to which those rates are sensitive to climatic
variations on a day to day basis—a fact the field practitioner is keenly aware of. It
is thus not surprising to find that models have not been of great help to define crop
and environmental management, considering the vagaries of climate prediction.
Thirty years are required to characterize mean climatic data at one site. Manage-
ment practices based on simulated scenarios for average climates must therefore
take a long-term view, which is not realistic in today’s socioeconomic context. It
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can be said, however, that reliable soil-crop models will be available when climate
models have been refined.

The soil-crop system is extremely complex, yet, through the interaction of afew
rates of N and C transformations expressed by simple mathematical expressions,
examples of successful simulation of complex kinetics of total and tracer C and N
in soil and crop have been obtained. Thus, the reductionist approach seems valid to
obtain a quantitative understanding of C and N dynamics in agroecosystems. There
is, of course, room for improvement with models of increased complexity. The func-
tion of the soil fauna on C and N transformations requires more attention (De Ruiter
et al., 1994; Fu et al., 2000). For example, soil nematodes and protozoa that increase
the rate of N immobilization may have a large impact on the effect of elevated CO,
concentrations on the global C and N cycles (Brimecombe et al., 2000).

The definition of the soil initial conditions, particularly the initial levels of res-
idues and SOM pools, is still performed by calibration. However, progress can be
made to alleviate this difficulty either by identifying those chemical fractions that
correspond to the SOM pools, or by including chemically and physically defined
fractions into deterministic simulation models (Xin-Tao He et al., 1988; Lemaitre et
al,, 1995; Cambardella, 1997; Paul et al., 1997; Xu et al., 1997; Curtin and Wen, 1999;
Schmidt et al., 1999; Selles et al., 1999). Similarly, crop residues are categorized in
model pools that reflect the chemical composition of the residues. The definition
of residues’ pools by proximate analysis has proven to be helpful to quantify their
decay kinetics and impact on N transformations (Corbeels et al., 1999; Henriksen
and Breland, 1999; Trinsoutrot et al., 2000a, 2000b).

Fine mnjhg of some parameters of N transformations requires more attention.
Simulated N kinetics are very sensitive to the efficiency of C incorporation in the
biomass, and the C/N ratio of biomass pools. Efficiency factors of 0.5 and C/N ratio
values ranging from 6 for bacteria to 12 for fungi are usually assumed. However,
adjustment of these values is often needed to fit simulated to experimental data (Bla-
godatsky and Richter, 1998; Henriksen and Breland, 1999; Verburg et al., 1999;). Not
only is growth but also the C/N ratio of plants increased by elevated CO, concentra-
tions, thus modifying the MIT in ways that must be included in mechanistic models
of global ecological changes (Berntson and Bazzaz; 1996; Hungate et al., 1997).

Finally but not least is the simulation of N dynamics between plants and soil,
essential for the simulation of plant growth limitation by N stress. Usually, a re-
duction factor on plant growth is activated when the simulated N concentrations
in some plant organs cross a threshold value—the higher the N deficit in the or-
gan, the more pronounced the reduction on growth. The relationship between the
reduction factor and the N deficit is not linear and varies among plants (Cabel-
guenne et al,, 1999). The form of the relationship is important but is usually not
reported in publications, as if this aspect of the agroecosystem dynamics were not
important. Also often omitted in publications is a description of the algorithms
used to treat the interaction between water and N stress, which, of course, varies
with plants. Another aspect of the soil-plant interaction that is not considered by
modelers is the impact of root N exudation on plant growth, although some mod-
els do consider the impact of C exudation on the SOM C and N turnover (Bottmer
et al., 1999; Kuzyakov and Domanski, 2000; Molina et al.,, 2001;). The recycling of
N root exudation back into the same plant has been documented (Jimenez et al.,
2002). Information about the rates of this N feedback loop would be best treated
by simulation modeling.
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